首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   11篇
化学   259篇
晶体学   8篇
力学   8篇
数学   7篇
物理学   30篇
  2022年   1篇
  2021年   11篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   7篇
  2013年   21篇
  2012年   33篇
  2011年   40篇
  2010年   15篇
  2009年   19篇
  2008年   14篇
  2007年   17篇
  2006年   15篇
  2005年   20篇
  2004年   17篇
  2003年   18篇
  2002年   15篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
61.
The enantioselectivity of the copper‐catalyzed intramolecular cyclopropanation of allyl diazomalonates and the corresponding phenyliodonium ylides was investigated with a series of chiral, non‐racemic ligands. The reaction of 6b in the presence of the bis[dihydrooxazole] ligand Xa in refluxing 1,2‐dichloroethane proceeded to 8b with an enantiomer excess (ee) of up to 72% under optimized conditions. In contrast, 8b resulting from reaction of ylide 7b with the same ligand, but in CH2Cl2 at 0°, had an ee of only 30%. With other ligands, diazomalonate 6b reacted with a lower enantioselectivity than ylide 7b , however. The intramolecular cyclopropanation of the acetoacetate‐derived phenyliodonium ylide 15b afforded 16b with 68% ee with ligand Xa , but the corresponding diazo compound was unreactive when exposed to chiral copper catalysts. The observation of asymmetric induction in the Cu‐catalyzed reactions of the ylides 7 and 15 is consistent with a carbenoid mechanism; however, the discrepancy of the enantioselectivities observed between diazomalonate 6b and ylide 7b suggests a competing unselective pathway for cyclopropanation outside of the coordination sphere of copper.  相似文献   
62.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   
63.
Triphenylphosphine Oxide (L) as Solvent and Ligand for Metallophthalocyaninates; Synthesis and Structure of [{Li(L)}2(μ‐pc)], [Li(L)4][Lipc] · Solvate, [Mg(L)pc] · Solvate, and [Zn(L)pc] · Solvate Triphenylphosphine oxide (L) coordinates to metallophthalocyaninates of Li, Mg and Zn at 300 °C. After purification and recrystallization in different solvents the very soluble and stable title compounds have been isolated and structurally characterized. In [{Li(L)}2(μ‐pc)], the Li atom lies in a distorted tetragonal pyramid of four isoindole N atoms (Ni) at a distance varying between 2.163(5) and 2.301(5) Å, and an O atom at 1.863(5) Å. In [Li(L)4] · [Lipc] · S, the Li atom of the cation coordinates four O atoms in a distorted tetrahedral arrangement at a distance varying from 1.887(9) to 1.953(9) Å, while the Li atom of the anion is in a quasi quadratic planar geometry of four Ni atoms (1.951(9)–1.977(9) Å) with the Li atom being displaced by 0.15 Å out of the (Ni)4 plane. The structural data of the distorted tetragonal pyramidale Mg(Ni)4O moiety in [Mg(L)pc] and the solvates [Mg(L)pc] · S (S = CH2Cl2, thf, 2py) generally do not vary significantly: Mg–Ni/2.035(3) –2.061(3) Å, Mg–O/1.955(2)–2.000(3) Å. The Mg atom is displaced by ca. 0.52 Å out of the (Ni)4 plane towards the O atom and the Mg–O–P moiety is bent (ca. 153°). [Zn(L)pc] · S crystallizes as a mixed crystal of equal parts of the conformer with a bent (155.1(3)°) and that of a quasi linear Zn–O–P moiety (174.2(3)°). Structural data of the Zn(Ni)4O moiety: (Zn–Ni)av: 2.024/2.013 Å; Zn–O: 2.050(4)/2.081(4) Å; Zn–(Ni)4: 0.40/0.33 Å. In the crystal, the Mg and Zn derivates aggregate in double layers forming pairs. The pc ligands in the triclinic complexes with good overlap of the neighbouring pc ligands are in a waving conformation, while those in the monoclinic complexes with weak overlap are in a concave conformation.  相似文献   
64.
The synthesis of a salicylaldehyde derivative facing an encumbered phenol group on a naphthalene block as a molecular shaft is reported. This molecular unit has been designed to elaborate coordinating ligands holding non-coordinating phenol group for the generation of phenoxyl radical in the close proximity of a metal complex.  相似文献   
65.
Coating of silica nanoparticles by biocompatible and biodegradable polymers of ε‐caprolactone and L ‐lactide was performed in situ by ring‐opening polymerization of the cyclic monomers with aluminum, yttrium, and tin alkoxides as catalysts. Hydroxyl groups were introduced on the silica surface by grafting of a prehydrolyzed 3‐glycidoxypropyl trimethoxysilane to initiate a catalytic polymerization in the presence of metal alkoxides. In this manner, free polymer chains were formed to grafted ones, and the graft density was controlled by the nature of the metal and the alcohol‐to‐metal ratio. The grafting reaction was extensively characterized by spectroscopic techniques and quantified. Nanocomposites containing up to 96% of polymer were obtained by this technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1976–1984, 2004  相似文献   
66.
The relaxation of electronic spins S of paramagnetic species is studied by the field-dependence of the longitudinal, transverse, and longitudinal in the rotating frame relaxation rates R1, R2, and R1rho of nuclear spins I carried by dissolved probe solutes. The method rests on the model-independent low-frequency dispersions of the outer-sphere (OS) paramagnetic relaxation enhancement (PRE) of these rates due to the three-dimensional relative diffusion of the complex with respect to the probe solute. We propose simple analytical formulas to calculate these enhancements in terms of the relative diffusion coefficient D, the longitudinal electronic relaxation time T1e, and the time integral of the time correlation function of the I-S dipolar magnetic interaction. In the domain of vanishing magnetic field, these parameters can be derived from the low-frequency dispersion of R1 thanks to sensitivity improvements of fast field-cycling nuclear relaxometers. At medium field, we present various approaches to obtain these parameters by combining the rates R1, R2, and R1rho. The method is illustrated by a careful study of the proton PREs of deuterated water HOD, methanol CH3OD, and tert-butyl alcohol (CH3)3COD in heavy water in the presence of a recently reported nonacoordinate Gd(III) complex. The exceptionally slow electronic relaxation of the Gd(III) spin in this complex is confirmed and used to test the accuracy of the method through the self-consistency of the low- and medium-field results. The study of molecular diffusion at a few nanometer scale and of the electronic spin relaxation of other complexed metal ions is discussed.  相似文献   
67.
68.
Today, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants. The present work aims to develop a noninvasive methodology for living plant based on nuclear magnetic resonance (NMR) at low magnetic field and imaging (MRI) to tackle the issue of water quantity in plants. For this purpose, a portable NMR device measuring the signal level at 8 mT was built. This instrument addresses specific challenges such as miniaturization, accessibility, and overheating in order to maintain the plant intact of time over long period. Time dependence of the water content in sorghum plants is reported under abiotic stress as well as the fraction of transpirable soil water and the photosynthesis activity through the leaves. At high magnetic field (9.4 T), T2 maps were acquired on the same sorghum plants at two time points. The combination of these approaches allows us to identify ecophysiological biomarkers of drought stress. One particular interesting result concerns the spatial distribution of water in two anatomically contrasted sorghum genotypes.  相似文献   
69.
70.
Light scattering is a useful diagnostic tool for characterization of particles. Direct scattering measurements for arbitrarily shaped micro-scale particles is difficult due to small-scale limitations. Microwave analogy is a convenient approach to realize such measurements as it enables realization of analogous experiments with larger model particles in a spectral domain where wavelengths are on centimeter scale. In the present study a test model analogous to light scattering by a micro-scale aggregate of dielectric spheres was constructed and experimentally characterized in the microwave regime. Measured amplitude and phase of the scattered field were compared with theoretical predictions obtained from quasi-exact multiple-scattering T-matrix method and discrete dipole approximation (DDA). Excellent agreement demonstrates the validities of both the experiment and the models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号